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This work comprises calculations using the Frenkel±Kontorova and double-

chain models, which led to new results explaining the experimental diffraction

pattern of K-hollandite. The use of a deformable host chain and a Lennard-

Jones-like interchain interaction gives the best results. From these calculations,

it can also be concluded that the guest as well as the host are deformed and

that the system is pinned. The inclusion of Debye±Waller factors as ®tting

parameters is also discussed, with the conclusion they should not be used in the

case of the double-chain model.

1. Introduction

Hollandite structures are of interest, both experimentally and

theoretically, because they form incommensurate inclusion

compounds (van Smaalen, 1994), containing two different

sublattices with competing lengths in one crystallographic

direction. These structures are also interesting owing to their

ionic conductivity by cations.

Hollandite structures form one-dimensional parallel tunnels

in which different cations can be embedded. This article

concentrates on the K-hollandite K1:54Mg0:77Ti7:23O16 (Weber

& Schulz, 1986). It contains an octahedral (Ti, Mg)-oxide

framework (the host structure) forming separate channels in

which the potassium ions (the guests) reside. Fig. 1 shows a

sketch of the structure projected on the ab plane. Not all

available crystallographic sites in the tunnels are occupied by

potassium ions, in fact in the present case the fractional

occupancy of these sites is 77%. The periodicity of the host is

2.97 AÊ and that of the guest 3.86 AÊ (� 2:97=0:77) along the c

direction, in the other directions a � b � 10:13 AÊ .

A rotation photograph of X-ray scattering in K-hollandite

measured by Beyeler (1976) showed the existence of diffuse

layers perpendicular to c�. This means that the K chains in

neighbouring tunnels are uncorrelated, at least to a ®rst

approximation, and, therefore, this part of the scattering can

be treated in a one-dimensional way. Sections perpendicular

to these layers will contain the corresponding one-dimensional

Bragg peaks which are the topic of this work. A con®guration

model (Beyeler, 1976; Beyeler et al., 1977, 1980) using a

potential based on the Frenkel±Kontorova model was intro-

duced to describe these one-dimensional experimental curves.

This static model led to a Bragg scattering curve that coincides

well with the experimental curve. Later work used other

techniques to calculate the scattering curves, also based on the

Figure 1
Structure of K-hollandite projected on the ab plane

Figure 2
Oscillation photograph around the c axis (�45�) at 293 K; 6 kW rotating
anode, Mo K� radiation; 30 h exposure time. Taken from Rosshirt (1988).



Frenkel±Kontorova model (Ishii, 1983) and one using the

molecular-dynamics method (Michiue & Watanabe, 1999)

based on a Coulomb interaction, Gilbert-type repulsion.

These models led to the same results as were already obtained

by the static con®guration model.

Fig. 2 shows an X-ray rotation photograph measured by

Rosshirt et al. (1991) that gave more information, mainly due

to longer exposure times. In addition to the three layers

observed by Beyeler, there are further weaker ones. A

precession photograph (Rosshirt et al., 1991) of the ®rst

diffuse layer of the guest structure showed the intensity

distribution in this layer in more detail. The intensity distri-

bution on the diffuse layers is not homogeneous but shows

short-range-order modulations. From a detailed analysis of the

symmetry of these modulation peaks and spatial considera-

tions, it was concluded that at least part of the scattering has to

be assigned also to the host structure. Because these experi-

ments revealed much more complicated diffuse patterns, the

former calculations and comparisons with the rotation

photograph of Beyeler (1976) were no longer satisfactory.

New calculations using a method published by Radons et al.

(Radons et al., 1985; Rosshirt, 1988; Boysen, 2001) did not lead

to satisfactory results. In particular, at low wave vectors many

discrepancies were found.

This article presents new calculations using the Frenkel±

Kontorova and the double-chain model (Radulescu & Janssen,

1999; Brussaard et al., 2001). The former model assumes that

the host lattice is rigid and is represented by a sinusoidal

potential, the guest is deformable and is represented by a

harmonic chain of atoms. The latter gives the opportunity to

study also the deformation of the host, because here both

subsystems are represented by deformable harmonic chains

that interact with each other. Theoretical calculations

concerning the structure and Bragg spectra are presented

here. The simulation of an experiment requires the incor-

poration of effects due to the speci®c experimental set-up.

The calculations use an approximation of the real incom-

mensurate structure by introducing a large unit cell on which

periodic boundary conditions are applied. The ground-state

con®guration and the corresponding Bragg scattering curves

of the lattices are calculated. The results using the Frenkel±

Kontorova system are different from the earlier results

(Beyeler, 1976; Beyeler et al., 1977, 1980; Ishii, 1983; Michiue

& Watanabe, 1999) in showing a peak at the ®rst main Bragg

point of the host as well. The resulting scattering curves from

the double-chain model coincide nicely with the experimental

curve. This model shows also that not only the guest but the

host structure as well is deformed. It is also shown that an

interchain interaction that extends over several unit cells gives

better results than a short-range interchain potential. From

the modulation functions, it can be concluded that the system

is pinned. The use of Debye±Waller factors for both subsys-

tems (in the case of the double-chain model) as ®tting par-

ameters is discussed.

The article is organized as follows. x2 presents the models

used to calculate the Bragg scattering curve of the guest chain

in K-hollandite. x3 presents the results of the calculations. x4
discusses the results. In x5, conclusions are drawn.

2. Models

This work uses two related models. The ®rst is the Frenkel±

Kontorova model (Frenkel & Kontorova, 1938), which

consists of a harmonic chain (VG) on a rigid sinusoidal

potential (VH). The potential energy of this model can be

written as

V � VG � VH

� kG

2

X
i

�xi ÿ xiÿ1 ÿ ��2 ÿ
Vo

2

X
i

cos
2�

�
xi

� �
; �1�

where kG is the force constant of the chain, � is the periodicity

of the chain, xi are the positions of the atoms in the chain, Vo is

the strength of the substrate potential and � is the periodicity

of this potential. The ®rst term describes the guest chain, the

second term represents the potential due to the host structure.

The second model is an extension of the previous model:

the double-chain model (Radulescu & Janssen, 1999; Brus-

saard et al., 2001), where the substrate potential is replaced by

a second deformable chain. Fig. 3 shows a sketch of this model.

In this article, the upper chain corresponds to the host struc-

ture and the lower chain to the guest structure in K-hollandite.

The potential energy for this model can be written as follows:

V � VH � VG � VHG

� kH

2

X
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kG
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where kH and kG are the force constants of the host and guest

intrachain potentials, � and � the equilibrium distances, xi and

yj the positions of the ith and jth particles of the ®rst and

second chains, respectively, and kHG is the strength of the

interchain potential ��r�.
This article uses two different interchain potentials, the ®rst

being a Gaussian potential which is written as
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Figure 3
The double-chain model. The intrachain potentials (indicated by springs)
are harmonic. The interchain potential is either Lennard-Jones like or
Gaussian. The distance d between the chains is ®xed. The equilibrium
distances between particles in the chains are � and �, respectively.
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��xi ÿ yj� � ÿ
1
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�

� �2
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; �3�

where � denotes the width of the potential well. At a distance

of 9 AÊ , which is much larger than �, the Gaussian potential

was cut off. The other interchain potential used is a Lennard-

Jones-like potential:

��r� � r2 � d2

�2

� �ÿ6

ÿ r2 � d2

�2

� �ÿ3
" #

; �4�

where d is the ®xed distance between the two chains and �
denotes where the potential crosses the zero axis. The par-

ameters � and d equal 1 and 1.2 AÊ , respectively, in the

numerical calculations. The minimum of the Lennard-Jones

potential is at a smaller distance (r � 1:12 AÊ ) than the

distance d, so that only the attractive part beyond the

minimum of the Lennard-Jones potential plays a role. The

potential is cut off at a distance of about 570 AÊ using a cut-off

function to avoid singularities in the derivatives that are used

in the minimization of the potential energy (2).

In both models, the masses of the particles are taken as

unity. The models are one-dimensional and the particles are

allowed to move only in the chain direction. A large unit cell

was chosen in the numerical calculations as an approximation

to the real incommensurate crystal. The periodicity of the host

is in both models � � 2:97 AÊ , in the case of the double-chain

model there are 55 particles in the host chain. In both models,

the guest chain contains 42 particles and has a periodicity

� � 3:89 AÊ to match the required ratio in the real crystal as

closely as possible. On this large unit cell, periodic boundary

conditions are applied.

The steps followed in the numerical calculations are as

follows. First the equilibrium positions of the particles are

found by minimizing the potential energies (1) or (2). This was

performed numerically using a quasi-Newton [the Broyden±

Fletcher±Goldfarb±Shanno algorithm (Press et al., 1996)]

method. The system parameters, i.e. the lattice periodicities,

the force constants and the parameters of the interchain

potentials, were kept ®xed during the minimization procedure.

The equilibrium con®guration of the chain in the absence of

the substrate potential was used as a starting point for the

minimization routine in the ®rst model. In the second model,

the input con®guration is formed by the equilibrium positions

of the particles in the absence of the interchain potential.

From the minimum con®guration, the modulation functions

can be calculated (Brussaard et al., 2001).

Next, the one-dimensional Bragg scattering curve is calcu-

lated. The intensity distribution S�k� is proportional to the

square of the geometrical structure factor G�k�:

S�k� / jG�k�j2 �Pn
i

Pn
j

exp�ik�zi ÿ zj��; �5�

where k is the difference between the incoming and outgoing

wave vectors and z stands for x or y, the positions of the

particles in the chains after minimization. For comparison with

experimental results, this calculated Bragg scattering curve

can be modi®ed by instrumental factors like the Lorentz or

polarization factor, for a discussion on these see x4. If only the

positions of the guest chain are taken into account (in the case

of the double-chain model), one obtains the scattering curve

of the guest structure. The curve found using this equation was

smoothed using a moving Hann window (Press et al., 1996).

For the double-chain model, the scattering curve of the total

system contains Bragg peaks due to the host and to the guest

structures. The former are at wave vectors 2n�=� and the

latter at 2m�=�, where n and m are integers. Beside these

main peaks, there will also be satellite re¯ections at wave

vectors 2n�=� � 2m�=� with both n and m nonzero. The

labelling of these peaks will be (m, n), where m stands for

contributions from the guest and n from the host lattice. Note

that the main peaks of the host (0, n) contain also contribu-

tions from the guest and vice versa owing to the mutual

modulation, i.e. the modulation function of the host has the

period of the guest structure and vice versa. In order to obtain

the one-dimensional part of interest here, which is due to the

guest structure only, the scattering from the unperturbed host

structure is subtracted from the scattering from the total

system in one of the performed model calculations. Note that

in the notation used here the ®rst index refers to the guest, the

second to the host, for compatibility with previous work.

3. Results

Fig. 2 shows the oscillation photograph (Rosshirt, 1988;

Rosshirt et al., 1991) of K-hollandite around the c axis

measured by E. Rosshirt. Along a line perpendicular to the

layers, the gray scale can be converted into intensities (without

using integrated intensities) as was performed in Rosshirt

Figure 4
The intensities of the experimental scattering on a line normal to the
diffuse sheets. The line is chosen so that the main Bragg peaks of the host
are avoided.



(1988). Fig. 4 shows the results (Rosshirt, 1988) for such a line.

Other parallel lines show similar intensity distributions. The

selected line was chosen so that the main three-dimensional

Bragg re¯ections of the host structure were avoided. Indicated

in the ®gure are main Bragg re¯ections of the guest and

satellite re¯ections. To the right of the peaks at (1, 0) and

(1, 1), the weaker peaks (or shoulders) visible in the ®gure can

be labelled (0, 1) and (0, 2). Note that these peaks are missing

in the curves presented by Beyeler (1976).

For the Frenkel±Kontorova model, the best results were

obtained by choosing kG and Vo equal to 0:19 and 0:24,

respectively. Fig. 5 shows the resulting scattering curve.

Contrary to former calculations (Beyeler et al., 1980; Ishii,

1983; Michiue & Watanabe, 1999), there is a peak at (0, 1). At

(0, 2) no peak is found and an extra but weak broad peak is

found at (3; �1).

In the double-chain model, ®rst the Gaussian potential (3)

was chosen as the interchain potential �. Fig. 6 shows two

different resulting scattering curves. Note that the system

parameters are different in the two cases. Curves that agree

best with the experiment are shown. The curve resulting from

a somewhat wider potential well (solid line in the ®gure)

agrees better with the experimental curve than in case of the

narrower well, i.e. smaller value for the parameter �. However,

both curves do not give a satisfactory agreement with the

experimental Bragg scattering curve. In the case of the larger

�, peaks are found in the same places as in the experiment,

except the last one, (1, 2), which is missing in the numerical

calculation. There is an additional one at (3, 0), which is not

present in the experiment. From the curve for smaller �, it can

be concluded that this does not correspond at all to the

experimentally found curve. The force constants for this curve

are rather unrealistic but these gave the best resulting curve.

The Lennard-Jones-like potential (4) has a longer range

than the Gaussian potential. Fig. 7 shows the results for these

calculations. The choice made for the values of the force

constants is kH � 25, kG � 1:1 and kHG � 2:98, which gave the

best results compared with the experimental scattering curve.

There are three curves in Fig. 7, corresponding to the same

choice of system parameters. The solid line gives the scattering

from all particles in the unit cell, guest as well as host systems.

The dashed line gives the scattering curve when only the guest

structure is considered, the dotted line when only the host

structure is taken into account.

4. Discussion

In this section, ®rst the calculated scattering curves are

compared to the experimental curves and the differences are

discussed. Then the found ground states and modulation
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Figure 5
Bragg scattering curve S�k� using the Frenkel±Kontorova model.
Indicated are the indices of the Bragg peaks with appreciable intensity.
The system parameters are: � � 2:97, � � 3:89 AÊ , kG � 0:19 and Vo �
0.24 and 42 particles in the guest chain.

Figure 6
The scattering curves S�k� using the double-chain model and a Gaussian
interchain potential for two choices of system parameters. The values of
the system parameters for the solid line are: � � 2:97, � � 3:89 AÊ ,
� � 0:95, kH � 25, kG � 1:1 and kHG � 2:0. Dashed line: � � 2:97,
� � 3:89 AÊ , � � 0:33, kH � 10000, kG � 0:1 and kHG � 2:5. In both
cases, there are 55 particles in the host and 42 particles in the guest chain.

Figure 7
Scattering curves S�k� obtained using the double-chain model with
Lennard-Jones interchain interaction. The system parameters are:
� � 2:97, � � 3:89 AÊ , kH � 25, kG � 1:1 and kHG � 2:98. There are 55
particles in the host and 42 particles in the guest chain. The solid line
corresponds to the scattering from the total system, the dashed line to
scattering from the guest structure and the dotted line to scattering from
the host structure.
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functions are discussed. Thirdly, the broadening of some peaks

is considered, followed by a discussion about factors (treated

is the Debye±Waller factor) that can improve the calculated

results. Finally, the comparisons between the calculated and

measured curves are made quantitative.

The calculations shown in Figs. 5 and 7 show also a peak at

(0, 1) as a result of the scattering at the guest chain. This peak

was not found in the former experimental measurements

(Beyeler, 1976) and the corresponding calculations (Beyeler et

al., 1980; Ishii, 1983; Michiue & Watanabe, 1999). However, at

least a weak contribution to this peak from the guest can be

expected, as the guest has a modulation function with peri-

odicity equal to that of the host structure, as mentioned in x2.

This explains the shoulder found in the experiment shown in

Fig. 4 at this peak. However, in this experimental curve a

shoulder with index (0, 2) is also visible, while in the calcula-

tions an extinction was found in both models. This could mean

that the selected line perpendicular to the diffuse layers still

cuts the edges of the main Bragg spots of the host. The details

of the former calculations are not known, but it is possible that

here the contribution to the scattering at (0, 1) and (0, 2) is

suppressed in some way.

The scattering curve due to the host in Fig. 7 shows very

weak contributions to satellite peaks (1, 1) and (1, 2), indi-

cating that the host is modulated. The modulation function of

the host (see Fig. 8) shows more clearly the deformation,

though the displacements of the host molecules are a factor of

10 smaller than those of the potassium ions. From the fact

that the modulation functions are discontinuous, it can be

concluded that the system is pinned so that the potassium ions

cannot move freely and do not form a liquid inside the

hollandite. The calculations by Radons et al. (1985) and

Rosshirt (1988) assumed the guest chains to be liquid like and

this presumably causes the bad agreement with the experi-

ment. The pinning can also explain the activation energy of

the conduction (Beyeler et al., 1980) of K-hollandite, although

defects in the crystal could also be partially responsible for this

feature.

Fig. 9 shows a section of the ground states of both the

Frenkel±Kontorova (plus) and the double-chain model

(cross). The guest chain of the double-chain model (the middle

chain in the ®gure) forms domains of mostly three ions. This is

slightly different from the results found by Beyeler et al.

(1980), where the domains contained mainly three or four

ions. The guest chain of the Frenkel±Kontorova model also

contains domains of three and four atoms. The differences in

the ground states of the double-chain and Frenkel±Kontorova

models are small (as is also visible in Fig. 8). The host lattice

being rigid or deformable leads to the differences found. That

the differences are small is to be expected from the fact that

the Bragg scattering curves of these models are also quite

similar. Note that there is a difference in approach in our

calculations and those of Beyeler et al. The latter takes

vacancies into account in the potassium chains, whereas the

calculations presented here start with two periodic undis-

turbed chains.

In the experimental curve, the (2, m) peaks are generally

broader than the (1, m) peaks. Extrapolating this observation,

the (3, m) peaks are expected to be even broader and this may

be the reason that the (3, 0) peak was not observed and

covered in the background. Note, however, that, in the

calculations using the double-chain model shown in Fig. 7, the

(3, 0) peak is also absent. In the calculations, the broadening of

the (2, m) peaks is not there. A probable cause for this lack of

broadening is the use of periodic boundary conditions, which

seems to lead to a coherency between the clusters (see Fig. 9)

formed in the guest chain. Nevertheless, disregarding this

effect, the areas underneath the peaks should be calculated

correctly and only these are therefore compared in the

following. Moreover, only the pure elastic Bragg scattering

is calculated, while in experiment there are still inelastic

contributions, which will broaden peaks with higher indices.

Finally, the calculated curves resulting from (5) are smooth-

ened, all with the same width.

As already stated, instrumental factors are not taken into

account during the numerical calculations. These are factors

such as polarization or absorption. If they are introduced by

hand in a calculation, these factors introduce extra parameters

that can be used to tune the calculated curves. For instance,

the calculations can be improved by introducing Debye±

Waller (DW) factors for both chains:

FDW � exp�ÿ2Uk2�; �6�
where U is the square of the average displacement for a

certain temperature and k the difference between the

Figure 8
The modulation functions for the same system parameters as in Fig. 7 in
the case of the double-chain model and in Fig. 5 in the case of the
Frenkel±Kontorova model. Left: the guest chain of the double-chain
model (plus) and the Frenkel±Kontorova model (cross). Right: the host
chain of the double-chain model. In the case of the Frenkel±Kontorova
model, the host is rigid and its modulation function is zero. The lines are a
guide for the eye.

Figure 9
Part of the ground states of the Frenkel±Kontorova model (plus) and the
double-chain model (cross) for the same system parameters as in Fig. 5
and Fig. 7, respectively. The upper chain is the host chain and the middle
chain the guest chain of the double-chain system.



incoming and outgoing wave vectors. For the host and guest

structures, different values for U can be chosen. Fig. 10 shows

the results including this effect. The solid curve shows the

Bragg scattering curve of the total system minus the Bragg

scattering that would come from the unperturbed host chain.

The dashed curve is the same but here the DW factors were

introduced in the calculations. It was assumed that the

potassium ions are lighter and therefore more mobile than the

atoms in the host structure. In this case, the chosen values for

U were 0.01 AÊ 2 for the host and 0.02 AÊ 2 for the guest chain. In

this way, the peak at (2, 1) is suppressed more than its direct

neighbour at (1, 2) and the results are a little closer to the

experimental curve.

The great impact of the use of DW factors in describing

temperature effects is shown in Fig. 11. This ®gure shows the

Bragg scattering curve of the guest chain for the following

choice of force constants: kH � 10, kG � 1:8 and kHG � 3:5.

The value for U was 0.07 AÊ 2 for the guest ions. The curve

without the DW factor (solid line) still shows peaks at high

wave vectors. However, with the DW factor (dashed line) they

are almost gone, which is also the case for the experimentally

found curve in Rosshirt (1988) measured at high temperature

(875 K). The results are better if the scattering curve from the

total system minus the scattering of the equilibrium state of

the host is considered, taking a DW factor of 0.04 AÊ 2 for the

host structure.

However, the use of the DW factor as a ®tting parameter is

not preferable. Whether the chosen DW factors are correct is

not a trivial question. The initial equation (2) does not depend

explicitly on temperature. The DW factors are included by

hand and the values for U were chosen such that the resulting

curve agrees best with the experimental curve. Therefore it is

not clear whether these found values correspond indeed to the

thermal displacement at the experimentally used temperature

(in this case room temperature or 875 K).

The contribution of instrumental factors (Lorentz, polari-

zation factors) was estimated and showed that the combina-

tion of all these factors can be ®tted to a reasonable

approximation by a pseudo DW factor within the actual range

of the measurements with an overall `instrumental' mean

square displacement of U � 0:034 AÊ 2. The form factor of the

guest (potassium) has been assumed to apply also for the host,

because, without thorough three-dimensional calculations, it is

dif®cult to estimate to what extent the number of O atoms and

other cations has to be taken into account. Since, however, the

contribution of the host is small, this further simpli®cation can

be tolerated as a ®rst approximation.

The inclusion of two extra parameters, the DW factor for

the host and the guest, respectively, only decreases the value

of R (Table 1, see last paragraph for more details) by a factor

2. The effect is not as big as expected and apparently the

results without the DW factors already give a good description
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Figure 10
Scattering curves S�k� using the double-chain model for the same system
parameters as in Fig. 7. The solid line shows the scattering curve of the
undistorted host chain subtracted from the total scattering curve of the
system after minimization. The dashed line corresponds to the same
calculation, but with DW factors incorporated.

Figure 11
Scattering curves S�k� of the guest chain using the double-chain model.
The solid line is without and the dashed line with a DW factor. The latter
agrees nicely with the high-temperature (875 K) measurement of
Rosshirt (1988). The system parameters are the same as in Fig. 7 except
kH � 10, kG � 1:8 and kHG � 3:5

Table 1
The difference of the calculated peaks with experiment (for details see
text).

The ®rst ®ve columns are calculations performed with the double-chain model
with the system parameters as in Fig. 7, the last with the Frenkel±Kontorova
system with parameters as in Fig. 5. The ®rst column corresponds to the
scattering of the total system, the second of the guest, the third of the total
system minus the host in equilibrium, the fourth of the total system minus the
host in equilibrium when DW factors are taken into account, the ®fth of the
guest with DW factors included and the last is just at the chain in the Frenkel±
Kontorova model. The last line gives the sum of the squared numbers in the
corresponding columns, denoted by R.

�n;m� 1 2 3 4 5 6

(1, 0) ÿ0.20 ÿ0.05 ÿ0.15 ÿ0.09 0.07 ÿ0.09
(0, 1) 0.44 ÿ0.03 0.26 0.34 0.0 0.0
(2, 0) ÿ0.14 ÿ0.08 ÿ0.12 ÿ0.12 ÿ0.07 ÿ0.12
(1, 1) ÿ0.05 0.07 0.01 ÿ0.02 0.05 0.11
(2, 1) ÿ0.03 0.09 0.01 ÿ0.07 ÿ0.01 0.11
(1, 2) ÿ0.02 0.01 ÿ0.01 ÿ0.03 ÿ0.03 0.0
R 0.26 0.02 0.10 0.14 0.01 0.05
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of the real system. In the case of the calculation at high

temperature, the effect is larger, though the discrepancies

from the experimental curve are also larger than at room

temperature.

The modulation of the host due to the interaction with the

guest shows displacements from its equilibrium positions

between ÿ0.06 and 0.05 AÊ for room temperature, ÿ0.12 and

0.11 AÊ for high temperature, while the average displacement

due to the included DW factor is 0.1 AÊ (0:011=2) and 0.2 AÊ

(0:041=2), respectively. This means that the thermal displace-

ment is almost twice as large as the static displacement due to

the competing forces in the double-chain system. When the

thermal displacement is added to the modulation function, the

non-analyticity is not clear any more. So it is no longer evident

that the host subsystem is also pinned. Therefore, the validity

of the double-chain model using DW factors becomes

doubtful. The system at high temperature is, owing to the great

in¯uence of the DW factors, not as sensitive to a change in

force constants as it is at room temperature.

The DW factors can be calculated using the phonon spec-

trum and the Bose distribution to ®nd the occupied phonons

at a certain temperature. This eventually leads to the average

thermal displacement of the molecules in the subsystems. This

dynamic calculation is out of the scope of this article. The

other way around is also possible, to ®nd the temperature

belonging to a certain value of U, but this is also not a trivial

procedure. Another dif®culty is the fact that the DW factors

involve three-dimensional dynamics whereas the model is

one-dimensional.

The comparisons between the experimental and calculated

curves made so far are not yet quantitative. There are many

ways to quantify the results and here a rather simple but

effective method is chosen. The area below a peak was

calculated and this number was divided by the area under all

the peaks taken into account. The peak at (0, 2) was not

considered as it is not found in all the calculations and its

origin in the experiment is not clear. The last step of the

calculation was to subtract the experimentally found areas

from the calculated ones. Table 1 shows the results. From these

numbers, it can be deduced that the scattering curve of the

guest using DW factors (®fth column) gives the best agree-

ment. Here the smallest numbers are found as is shown in the

bottom row of the table, where the squares of the numbers

in each column are summed. Note that in the Frenkel±

Kontorova model the scattering takes place only at the guest

chain. The results for the Frenkel±Kontorova model turn out

to be the third best match with the experimentally found

curve. The second best is the scattering at the guest chain in

the double-chain model, given in the second column. But the

introduction of two extra ®tting parameters by taking into

account the pseudo DW factors (®fth column) does not

dramatically improve the calculations compared with the

results in the second column, which already describe well the

experimental curve. This also means that the experimentally

found curve in Fig. 4 shows indeed the Bragg scattering of the

guest and that the modulation of the host is of importance for

the resulting scattering curve.

5. Conclusions

The experiments (Rosshirt, 1988; Rosshirt et al., 1991)

measuring the one-dimensional Bragg scattering of

K-hollandite showed more complicated patterns than earlier

measurements and calculations (Beyeler, 1976; Beyeler et al.,

1977, 1980; Ishii, 1983; Michiue & Watanabe, 1999) had shown

so far. Attempts to model (Radons et al., 1985; Rosshirt, 1988)

the structure were made, but those results were not very

satisfactory. Calculations performed in this article using the

Frenkel±Kontorova and double-chain models result in scat-

tering curves that agree very well with the experimental curve.

It was found that the interaction between the two subsystems

is indeed not short range.

Our calculations show a peak at (0, 1), i.e. the main Bragg

peak of the host, in the scattering of the guest chain. A weak

contribution can be expected, and this explains the weak peak

found in the experiment.

The double-chain model shows that the host chain is indeed

deformed although, being an order of magnitude stiffer than

the guest, its deformation is only weak (ten times less

compared with that of the guest). Therefore, the scattering

curve of the host contains primarily the main Bragg peaks,

although very weak contributions to satellites were observed

as well.

From the modulation functions of both the Frenkel±

Kontorova model and the double-chain model, it can be

concluded that the system is pinned. This means that the

subsystems cannot move freely over each other. This explains

the bad agreement of the calculations ®rst performed to

explain the new experiments (Radons et al., 1985; Rosshirt,

1988), where it was assumed that the potassium ions form a

liquid-like system in the channels. It was found that the

interaction between the two subsystems is indeed not short

range.

Modifying the calculated Bragg scattering curve by instru-

mental factors will lead to a better comparison to speci®c

instrumental results. The introduction of pseudo DW factors

showed this. However, the calculated scattering curve using

(5) (the square of the geometrical structure factor) agrees very

well with the experimental results. Therefore, the presented

double-chain model explains the Bragg scattering at

K-hollandite independent of the speci®c experimental set-up.
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